Salah
satu manfaat SPLDV dalam matematika khususnya menentukan koordinat
titik potong dua garis, menentukan persamaan garis, menentukan
konstanta-konstanta pada suatu persamaan.
Untuk
menyelesaikan permasalahan sehari-hari yang memerlukan penggunaan
matematika, maka langkah pertama yang harus dilakukan adalah menyusun
model matematika dari masalah tersebut. Data yang terdapat dalam
permasalahan itu diterjemahkan ke dalam satu atau beberapa PLDV.
Selanjutnya penyelesaian dari SPLDV digunakan untuk memecahkan
permasalahan tersebut.
Permasalahan-permasalahan
tersebut bias mengenai angka dan bilangan, umur, uang, investasi dan
bisnis , ukuran, sembako,gerakan dan lain-lain.]
Membuat model matematika dari masalah sehari-hari
Contoh soal:
Dalam
suatu hari seorang pedagang berhasil menjual sandal dan sepatu sebanyak
12 pasang. Uang yang diperoleh hasil dari penjualan adalah Rp.
300.000,-. Jika harga sepasang sandal Rp. 20.000,- dan harga sepasang
sepatu Rp. 40.000,-tentukanlah model matematikanya!
Jawab
Misalkan, banyak sandal yang terjual = x pasang
Banyak sepatu yang terjual = y pasang
Persamaan pertama : x + y =12
Persamaan kedua : 20.000x + 40.000 = 300.000 (kedua ruas dibagi 10.000)
2x + 4y = 30
Jadi model matematika adalah x + y = 12 dan 2x + 4y = 30
Contoh soal :
1. Dua
tahun yang lalu seorang laki-laki umurnya 6 kali umur anaknya. 18 tahun
kemudian umurnya akan menjadi dua kali umur anaknya. Carilah umur
mereka sekarang!
Penyelesaian:
Misalkan umur ayah sekarang x tahun dan umur anaknya y tahun, maka
x – 2 = 6( y – 2 )
x – 6y = -10………… (1)
x + 18 = 2(y + 18 )
x – 2y = 18 ………… (2)
dari persamaan (1) dan (2) diperoleh
x – 6y = -10
x – 2y = 18 –
-4y = – 28
y = 7
subtitusikan nilai y = 7 ke dalam persaman x – 2y = 18, maka diperoleh
x – 2(7) = 18
x – 14 =18
x = 32
jadi, sekarang umur ayah 32 tahun dan anaknya berumur 7 tahun.
2. Keliling sebidang tanah yang berbentuk persegi panjang adalah 48 m. panjangnya lebih 6 meter dari lebarnya. Tentukan ukuran tanah itu!
Penyelesaian
Misalnya panjang dan lebar tanah itu adalah x m dan y m.
Keliling = 2( panjang + lebar)
48 = 2(x + y) atau x + y = 24 ……….(1)
x = y + 6 atau x – y = 6 ……….(2)
dari persamaan (1) dan (2) dapat diperoleh
x + y = 24
x – y = 6 –
2x = 30
x = 15
subtitusikan x = 15 ke dalam persamaan x + y = 24, sehingga diperoleh
15 + y = 24
y = 24 – 15
y = 9
jadi, ukuran tanah itu adalah 15 m x 9 m.
3. Harga sebuah buku dan sebuah pensil RP 5.500,- harga 2 buku dan 3 buah pensil RP 12.500,-.
a. Nyatakan kalimat diatas dalam bentuk persamaan dengan peubah x dan y!
b. Selesaikan persamaan itu!
c. Tentukan harga 4 buah buku dan 3 buah pensil!
Penyelesaian:
a. Misalkan harga sebuah buku = x,rupiah
Harga sebuah pensil =y, rupiah
Maka persamaan dalam x dan y adalah
x + y = 5.500 …..(1)
2x + 3y = 12.500 …..(2)
b. Menyelesaikan persamaan diatas dengan disubtitusikan
x + y = 5.500
x = 5.500 – y
subtitusikan x = 5.500 – y ke persamaan 2
untuk x = 5.500 – y → maka 2x + 3y = 12.500
2(5.500 – y) + 3y = 12.500
11.000 – 2y + 3y = 12.500
11.000 + y = 12.500
y = 12.500-11.000
y = 1.500
subtitusikan y = 1.500 ke persamaan x = 5.500 – y
x = 5.500 – 1.500
x = 4.000
jadi nilai x dan y adalah Rp. 4.000 dan Rp. 1.500
c. Harga 4 buah buku dan 3 buah pensil
= 4x + 3y
= 4(Rp.4.000,-) + 3(Rp. 1.500,-)
= Rp. 16.000,- + Rp. 4.500,-
= Rp. 20.500,-
Jadi, harga 4 buah buku dan 3 buah pensil adalah Rp. 20.500,-
0 komentar:
Posting Komentar